Mathematics-Basic

Time allowed: $1\frac{1}{2}$ hours

Maximum Marks: 40

General instructions:

- (i) Do all the questions given in the chapter test.
- (ii) Section-A consists of ten MCQs from 1 to 10 of 1 mark each.
- (iii) Section-B consists of three questions from 11 to 13 of 2 marks each.
- (iv) Section-C consists of four questions from 14 to 17 of 3 marks each.
- (v) Section-D consists of three questions from 18 to 20 of 4 marks each.

SECTION-A

1. If p and q are two co-prime numbers, then HCF (p, q) is:

(A) p

(B) q

(D) 1

[CBSE-2011-560026; 2010-1040106-A2]

2. If d = HCF (48, 72), then the value of d is :

(A) 24

(B) 48

(C) 12

(D) 72

[CBSE-2011-560022; 2010-1040106-B2]

3. If p and q are two consecutive natural numbers, then HCF (p, q) is :

(A) q

(B) p

(C) 1

(D) pq

[CBSE-2010-1040106-C2]

4. HCF of two consecutive even numbers is:

(A) 0

(C) 4

(D) 2

[CBSE-2011-560011]

5. If n is any natural number, then which of the following expressions ends with 0:

(A) $(3 \times 2)^n$

(B) $(4 \times 3)^n$ (C) $(2 \times 5)^n$ (D) $(6 \times 2)^n$

[CBSE-2010-1040123-A1]

6. The value of x in the factor tree is:

(A) 30

(B) 150

(C) 100

(D) 50

[CBSE-2011-560014; 2010-1040123-C1]

7. A pair of irrational number whose product is a rational number is:

(A) $\sqrt{16}$, $\sqrt{4}$

(B) $\sqrt{5}, \sqrt{2}$

(C) $\sqrt{3}$, $\sqrt{27}$

(D) $\sqrt{36}$, $\sqrt{2}$

[CBSE-2011-560033]

8. The rational number of decimal number $0.\overline{6}$ is:

(A) $\frac{50}{50}$

(C) $\frac{111}{167}$

[CBSE-2010-1040110-A1, A2]

9. The decimal expansion of the rational number $\frac{43}{2^4 \times 5^3}$ will terminate after :

- (A) 3 places
- (B) 4 places
- (C) 5 places
- (D) 1 places

[CBSE-2011-560028]

10. The decimal expansion of $\frac{23457}{2^3 \times 5^4}$ will terminate after how many places of decimals?

(A) 2

(B) 3

(C) 4

(D) 5

[CBSE-2011-560019, 560036]

SECTION-B

- 11. Use Euclid's Division Algorithm to find the HCF of 399 and 56.
- 12. Show that every even positive integer is of the form 5m + 1 or 5m + 3 for some odd integer m.
- 13. Express 18440 as product of its prime factors. Is it unique?

SECTION-C

- 14. Prove that $\frac{7\sqrt{3}}{8}$ is an irrational number.
- 15. How many decimal places are there in decimal expansion of $\frac{11}{250}$?
- 16. Find the HCF and LCM of 540 and 72. Verify that HCF × LCM = Product of the two numbers.
- 17. Prove that $\sqrt{7}$ is an irrational number.

SECTION-D

- 18. What type of decimal expansion does an irrational number has? How can you distinguish it from decimal expansions of rational numbers?
- 19. Find the HCF of 324 and 54 using Euclid's division algorithm. Also, find their LCM and verify that HCF × LCM = Product of the two numbers.
- **20.** Prove that $\sqrt{5}$ is an irrational number. Hence, show that $5+4\sqrt{5}$ is also an irrational number.

Answers

- 1. (D)
- 2. (A)
- **3.** (C)
- **4.** (D)
- **5.** (C)
- **6.** (B)

- 7. (C)
- 8. (B)
- 9. (B)
- 10. (C)
- 11. HCF = 7

- 13. $2 \times 2 \times 2 \times 5 \times 461$, Unique
- 15. Three
- **16.** HCF = 36, LCM = 360

- 18. Non-terminating non-repeating
- 19. HCF = 54, LCM = 324

CHAPTER TEST

Mathematics-Basic

Time allowed: $1\frac{1}{2}$ hours

Maximum Marks: 40

General instructions:

- (i) Do all the questions given in the chapter test.
- (ii) Section-A consists of ten MCQs from 1 to 10 of 1 mark each.
- (iii) Section-B consists of three questions from 11 to 13 of 2 marks each.
- (iv) Section-C consists of four questions from 14 to 17 of 3 marks each.
- (v) Section-D consists of three questions from 18 to 20 of 4 marks each.

SECTION-A

1. The graph of y = p(x) is given below. The number of zeroes of p(x) are :

(A) 0

(B) 3

(C) 2

[CBSE-2011-560011]

2. In figure, the graph of a polynomial p(x) is shown, the number of zeroes of p(x) is:

(A) 0

(B) 2

(C) 1

(D) None of these

[CBSE-2011-560013, 560014]

3. The graph of the polynomial p(x) intersects the x-axis three times in distinct points, then which of the following could be an expression for p(x):

(A) $4-4x-x^2-x^3$

(B) $3x^2 + 3x - 3$

(C) 3x + 3

(D) $x^2 - 9$

[CBSE-2011-560015]

(A) 3

(B) 1

(D) 0

5. If $p(x) = x^2 + 5x + 2$, then p(3) + p(2) + p(0) is:

(A) 40

(B) 44

(D) 42

[CBSE-2011-560022]

ICBSE-2011-560024

6. The sum and the product of zeroes of a quadratic polynomial p(x) are -7 and -10 respectively. Then, p(x) is:

- (A) $x^2 7x 10$

- (B) $x^2 7x + 10$ (C) $x^2 + 7x 10$ (D) $x^2 + 7x + 10$

[CBSE-2011-5600301

7. The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is -2 is :

- (A) $x^2 + 3x 2$
- (B) $x^2 2x + 3$ (C) $x^2 3x + 2$

[CBSE-2011-560027, 560035, 560038]

8. The sum and the product of the zeroes of a quadratic polynomial are $-\frac{1}{2}$ and $\frac{1}{2}$ respectively, then the polynomials is:

- (A) $2x^2 + x + 1$
- (B) $2x^2 x + 1$
- (C) $2x^2 x 1$
- (D) $2x^2 + x 1$

[CBSE-2011-560017, 560018]

9. The quadratic polynomial p(y) with -15 and -7 as the sum and one of the zeroes respectively is: (A) $y^2 - 15y - 56$ (B) $x^2 + 15x + 56$ (C) $y^2 + 15y + 56$ (D) $y^2 + 15y - 56$

- [CBSE-2010-1040117-C1]

10. If the two zeroes of the quadratic polynomial $7x^2 - 15x - k$ are reciprocals of each other, the value of k is:

(A) - 7

(B) -5

(C) 5

(D) 7

[CBSE-2011-560022]

SECTION-B

11. Find the quadratic polynomial whose zeroes are $\sqrt{3}+5$ and $\sqrt{3}-5$.

12. Find the zeroes of the quadratic plynomial $x^2 + 5x + 6$ and verify the relationship between the zeroes and the coefficients.

13. Divide $x^3 + 4x^2 + x - 6$ by $x^2 - 1$.

SECTION-C

14. If one zero of the polynomial $6x^2 + 15x + p$ is reciprocal of the other, then find the value of p. Also find the zeroes of the polynomial.

15. If α and β are zeroes of a polynomial $2x^2 - 7x + 6$, then form a quadratic polynomial whose zeroes are 2a and 2B.

16. Divide the polynomial $4x^3 - 7x^2 + 9x + 17$ by the polynomial $x^2 - 3x + 7$ and verify the division algorithm.

17. Check whether polynomial x + 5 is a factor of the polynomial $x^3 - 4x^2 + 3x - 15$. Verify by division algorithm.

SECTION-D

18. For what value of x both the polynomials $x^2 - 4x + 3$ and $x^2 + 4x - 21$ become zero?

19. If one zero of the polynomial $x^2 + px + 10$ is 2, find the value of p and the other zero.

20. For what value of k, 7 is the zero of the polynomial $x^2 + 9x + (3k - 1)$? Also, find the other zero of the polynomial.

Answers

18. 3

11.
$$x^2 - 2\sqrt{3}x - 22$$

12.
$$(x + 2)(x + 3)$$

13. Quotient =
$$x + 4$$
, Remainder = $2x - 2$

14.
$$p = 6; -2, -\frac{1}{2}$$

15.
$$x^2 - 7x + 12$$

19.
$$p = -7$$
; 5

16. Quotient =
$$4x + 5$$
, Remainder = $-4x - 18$
20. $k = -37$; -16

Mathematics-Basic

Time allowed: $1\frac{1}{2}$ hours

Maximum Marks: 40

General instructions:

•(i) Do all the questions given in the chapter test.

(ii) Section-A consists of eight MCQs from 1 to 8 of 1 mark each.

(iii) Section-B consists of four questions from 9 to 12 of 2 marks each.

(iv) Section-C consists of four questions from 13 to 16 of 3 marks each.

(v) Section-D consists of three questions from 17 to 19 of 4 marks each.

SECTION-A

1. The graphical representation of the pair of equations x + 2y - 4 = 0 and 2x + 4y - 12 = 0 is :

(A) intersecting lines

(B) parallel lines

(C) coincident lines

(D) all the above

[CBSE-2011-560028, 560033]

2. The pair of linear equations 2x - 3y = 1 and 3x - 2y = 4 have :

(A) one solution

(B) two solutions

(C) no solution

(D) many solutions

[CBSE-2011-560024, 560033]

3. If two lines are intersecting at a point, then their equations will have:

(A) one solution

(B) infinitely many solutions

(C) no solution

(D) two solutions

[CBSE-2011-560029]

- 4. The pair of linear equations x 2y = 5 and 2x 4y = 10 has : (A) infinitely many solutions
 - (C) one solution

- (B) no solution
 - (D) two solutions
- 5. The pair of linear equations 2x + 3y 5 = 0 and 3x 2y + 5 = 0 has :
- [CBSE-2011-560016] (D) infinite solutions

- (A) unique solution
- (B) no solution
- (C) two solutions
- **6.** If the pair of equations 2x + 3y 5 = 0 and 4x + ky 10 = 0 has infinite number of solutions, then [CBSE-2011-560021]
 - $(A) k = \frac{3}{2}$
- (B) k = 6 (C) $k \neq \frac{3}{2}$
- (D) $k \neq 6$
- 7. If the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ has infinite number of
 - (A) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (B) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (C) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (D) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$
- - [CBSE-2011-560019]
- **8.** The pair of linear equations 2x + 5y = 3 and 6x + 15y = 12 represents: (A) intersecting lines (B) parallel lines
- (C) coincident lines
- (D) none from A, B, C [CBSE-2010-1040110-A2]

SECTION-B

9. Find whether the lines representing the following pair of linear equations intersect at a point, are parallel or coincident:

$$x + 2y - 5 = 0$$

$$3x + 6y - 15 = 0$$

- 10. If sum of two positive numbers is 128 and the difference of these numbers is 18, then find the numbers.
- 11. Find whether the following pair of linear equations is consistent or inconsistent:

$$\frac{3}{2}x + 2y - 12 = 0, \ 5x - \frac{20}{3}y + 20 = 0$$

- 12. Given the linear equation 2x 5y + 7 = 0, write another linear equation in these two variables such that the geometrical representation of the pair so formed is:
 - (i) intersecting lines (ii) parallel lines.

SECTION-C

- 13. Draw the graph of 3x y = 3 and 2x + 3y = 13. Shade the region bounded by these lines and x-axis. Find the area of the shaded region.
- 14. Solve by substitution:

$$x + y = 7$$

$$2x - y = 5$$

- 15. The difference of two numbers is 58. If one number is three times the other, find the numbers.
- 16. Six chairs and two tables cost ₹ 6600, whereas four chairs and one table cost ₹ 4000. Find the cost of a chair and a table separately.

SECTION-D

17. Solve by elimination:

$$7x + 9y = 23$$

$$2x + 11y = 15$$

Hence, find the value of p such that px + 9y = 15.

18. Solve graphically the following pair of linear equations:

$$3x - 4y + 3 = 0$$

$$3x + 4y - 21 = 0$$

Hence, shade the region enclosed by these lines and y-axis.

19. Draw the graph of the pair of equations:

$$5x - 7y + 50 = 0$$
 and $5x + 7y - 20 = 0$.

Also, find the points, where the lines meet the x-axis.

Answers

1. (B)

2. (A)

3. (A)

4. (A)

5. (A)

6. (B)

7. (B)

8. (B) 9. (

9. Coincident

10. 55, 73

11. Consistent

12. (i) x - y = -2 (ii) 4x - 10y + 12 = 0

Note: The answers of this question are not unique.

13. 8.25 sq. units

14. x = 4, y = 3

15. 29, 87

16. ₹ 700, ₹ 1200

17. x = 2, y = 1; p = 3

18. x = 3, y = 3

19. (-10, 0), (4, 0).